

New trends in optical fiber communication

Kurosh Bozorgebrahimi (UNINETT) Josef Vojtěch (CESNET) Pavel Skoda (CESNET) GN3-JRA1-T2

NORDUnet2011, Reykjavik, 07-06-2011

"The research leading to these results has received part of its funding from the European Community's Seventh Framework Programme(FP7/2007-2013) under grant agreement n° 238875 (GÉANT)"

Topics

- Evolution of optical fiber
 - Standards type and proprietary type
- Shannon limit and fiber capacity
- Optical Transmission evolution
 - OFDM
 - OTDM
 - Spatial division multiplexing

https://tnc2011.terena.org/web/media/archive/6D

ITU-T standars

- G.650.1: Definitions and test methods for linear, deterministic attributes of single-mode fibre and cable
- G.650.2: Definitions and test methods for statistical and non-linear related attributes of single-mode fibre and cable
- G.650.3: Test methods for installed single-mode optical fibre cable links
- Withdrawn: G.651 Characteristics of a 50/125 µm multimode graded index optical fibre cable
- G.651.1: Characteristics of a 50/125 µm multimode graded index optical fibre cable for the optical access network
- G.652: Characteristics of a single-mode optical fibre and cable
- G.653: Characteristics of a dispersion-shifted, single-mode optical fibre and cable
- G.654: Characteristics of a cut-off shifted, single-mode optical fibre and cable
- G.655: Characteristics of a non-zero dispersion-shifted single-mode optical fibre and cable
- G.656: Characteristics of a fibre and cable with non-zero dispersion for wideband optical transport
- G.657: Characteristics of a bending-loss insensitive single-mode optical fibre and cable for the access network

G.652 and it's variations

G.652 A, B, C and D

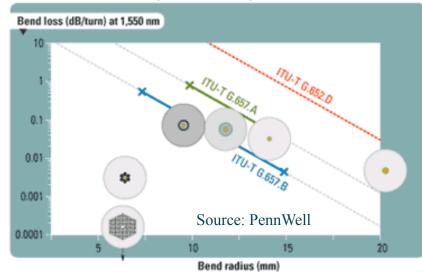
Fiber type (Manufacturer)*	Fiber loss @ 1550 nm	CD @ 1550 nm	Effective area
Legacy SSMF	0.2 dB/km	16.5 ps/nm/km	<mark>83 μm</mark> ²
ULAF (OFS)	0.185 dB/km	20 ps/nm/km	120 µm²
Z-PLUS (Sumitomo)	0.168 dB/km	20.5 ps/nm/km	110 µm²
Vascade EX2000 (Corning)	0.161 dB/km	20.5 ps/nm/km	112 µm ²
LongLine (Draka)	0.185 dB/km	22 ps/nm/km	120 µm²

* All specifications based on information extracted from scientific publications

Leads to 40% - 70% enhancement of maximum reach !

0.7 0.6 Attenuation (dB/km) 36th ECOC WS6 / J. Slovak / 19-09-2010 O Nokia Siemens Networks 0.5 **Conventional Standard** 0.4 Single-Mode Fiber 0.3 0.2 Full-Spectrum Fiber 0.1 O-Band E-Band S-Band C-Band L-Band 0 1250 1300 1350 1400 1450 1500 1550 1600 Corning

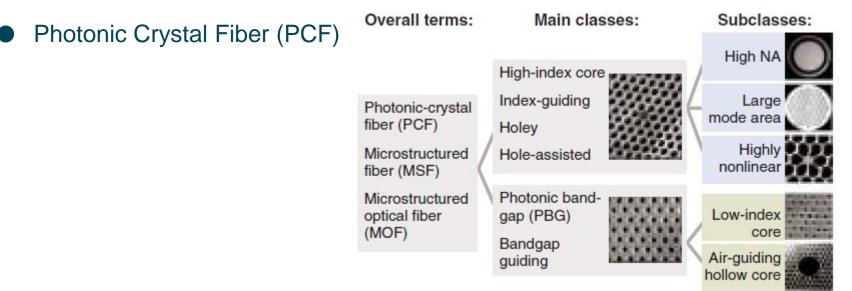
CESNET


0.8

G.657 bending-loss insensitive fiber

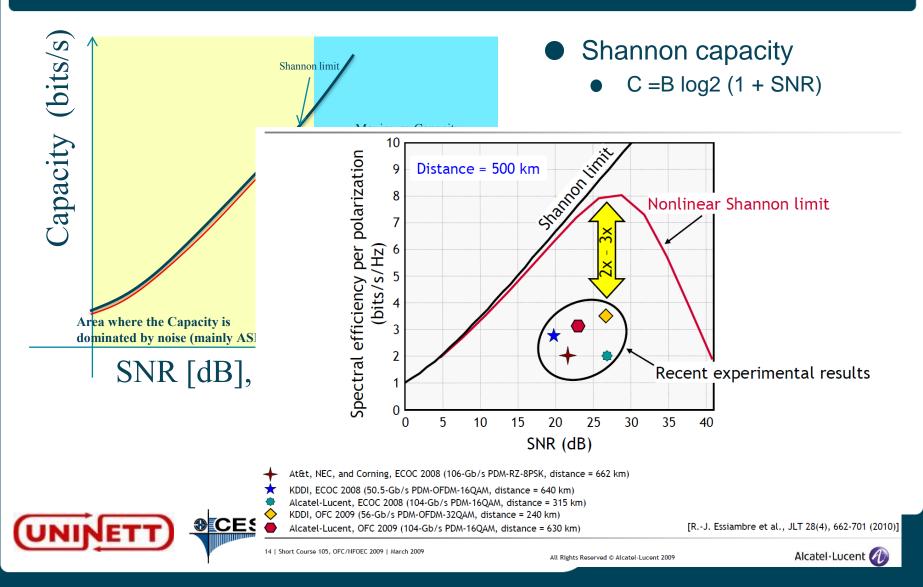
G.657	Minimum bending radius		
Low-bending-loss optical fiber for access networks	10 mm	7.5 mm	5 mm
Category A	A1	A2	A3
Fully compatible with G.652	Specified	Specified	Under discussion
Category B	B1	B2	B3
Partially compatible with G.652	No standard product	Specified	Specified

Bend performance comparison



New and non-standrad fibers

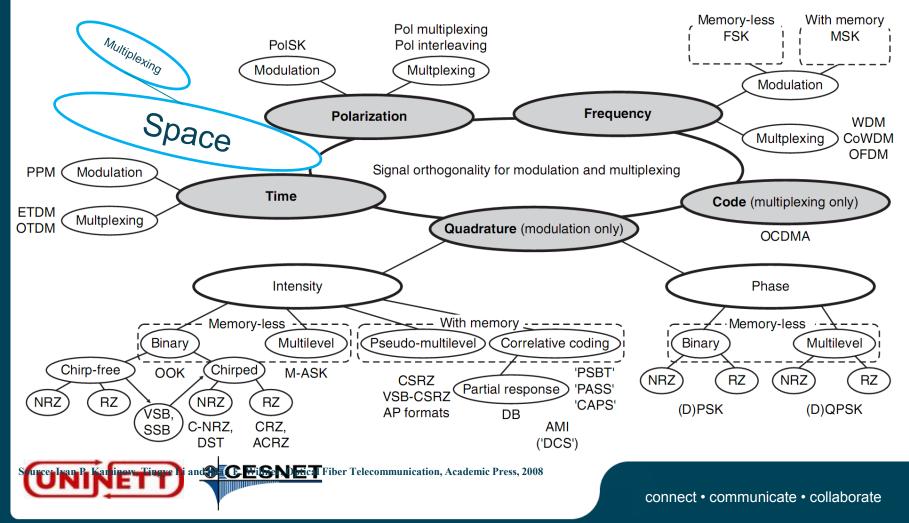
- Multi Core Fiber (MCF)
- Few Mode Fiber (FMF)



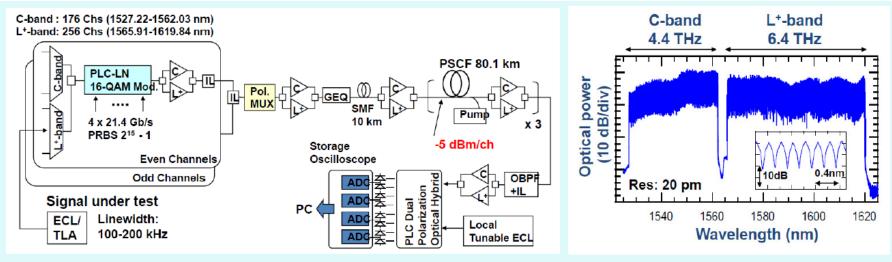
Source: Dr. Jason Eichenholz, Optoelecronics world, Photonic Crystal Fiber

Shannon limit and fiber capacity

- Ultramulti-level coherent transmission (Multilevel modulation)
- New optical fibre technologies (Multi-core fibres)
- Mode division multiplexing (Multi-mode control with MIMO)



Possibilities Modulation and multiplexing


Modes

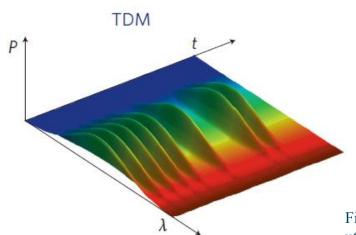
Multi Core fibers

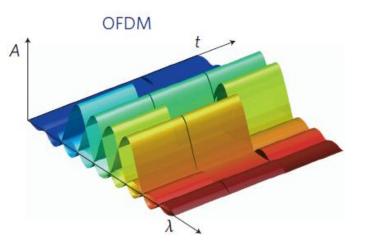
69.1Tbit/s QAM transmission

69.1 Tbit/s (432x171 Gbit/s), PDM-16QAM transmission over 240 km

A. Sano et al., OFC2010, PDPB7

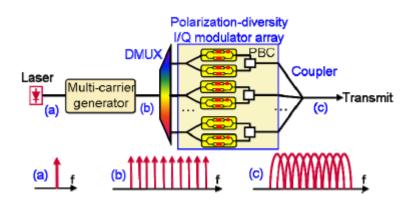
101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM

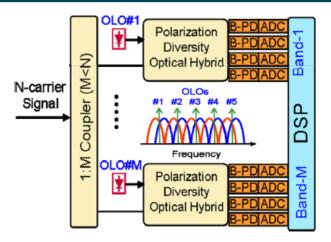

- 370x294-Gb/s WDM transmission
- each 25-GHz channel with 4x73.5 Gb/s OFDM subbands where PDM-128QAM was used at each modulated subcarrier
- We further partition the 25 GHz usable bandwidth per channel into four equal subbands, each of which carries an OFDM signal with 6 GHz bandwidth.


Dayou Qian et al., OFC2011, PDPB5

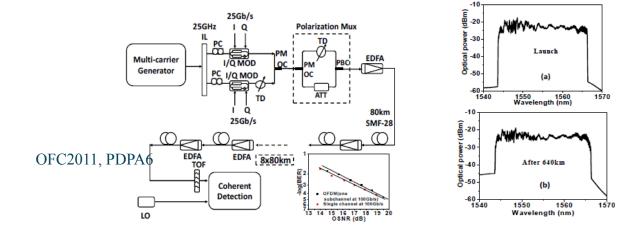
Beyond 100G bitrates per wavelength (single laser source): OTDM vs OFDM GÉANT

- To different method which are used to achieve higher bitrates per single channel
 - Orthogonal frequency division multiplexing
 - Optical time division multiplexing




Figures: D.Hillerkuss et al. 26 Tbit s21 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing, nature photonics, DOI:10.1038

Superchannel

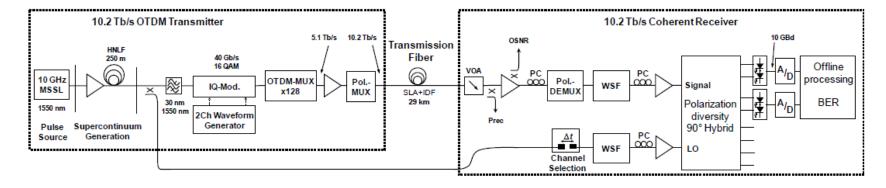


Ref.	Format	Superchannel	Composition	Intrachannel SE	Reach	ISEDP
		data rate (Gb/s)		(b/s/Hz)	(km)	(km×b/s/Hz)
7	NRZ-OOK (DD)	288	7 x 41.3-Gb/s	0.93	1200	1116
4	DQPSK (DD)	100	2 x 25-Gb/s	1.87	1300	2431
8	Duobinary (DD)	100	4 x 25-Gb/s	0.93	100	93
9	NGI-CO-OFDM	112	2 x 56-Gb/s	3.74	10093	37748
	PDM-QPSK					
6	NGI-CO-OFDM	1200	24 x 50-Gb/s	3.74	7200	26928
	PDM-QPSK					
12	GI-CO-OFDM	1080	36 x 30-Gb/s	3.15	600	1890
	PDM-QPSK					
13	GI-CO-OFDM	1210	50 x 24.2-Gb/s	3.33	400	1332
	PDM-QPSK					
14	RGI-CO-OFDM	448	10 x 45-Gb/s	7.00	2000	14000
	PDM-16QAM					

Recent experimental demonstrations of superchannels, source: ECOC2010, Tu.3.C.5

Single source Optical OFDM (superchannel)

 11.2 Tbit/s High capacity per channel by using 112 optical sub-carriers with subcarrier spacing of 25GHz


 D. Hillerkuss et al., 26Tbit/s line-rate super-channel transmission utilizing all-optical fast Fourier transform processing, Published 22 May 2011, nature photonics

Single source Optical OFDM (superchannel)

 High capacity per channel by using OTDM: 40 Gbit/s base channel rate and Optical time-division multiplexing by a factor of 128 using passive fiber delay multiplexers. (10.2 Tbit/s). 30nm

OFC2011, PDPA9

Capacity beyond 100G and commercially availability?

- Standard is a MUST
- Mainstream thinking is that the next rate will be 400G or 1T
 - Both line-side and client-side should be considerd
- Consensus between ITU-T and IEEE about the line-side and client-side bitrates are necessary
 - ITU-T: There have been few preliminary contributions about ODU5
 - IEEE 802.3 has created a "bandwidth assessment ad hoc"
 - gather data that might eventually lead to the creation of a "next rate" project
- A development beyond 100Gbit/s will be similar to that happened from 10G to 40G/100G.
 - IEEE used 4 years to develop 40GbE and 100GbE recommendation/standard (2006-2010)

• Next rate products as it is for 100G today will not be ready before

Spatial multiplexing

Multi-Core fiber

Crosstalk is one of the main issues

Multimode fiber

- Mode Division Multiplexing (MDM)
- Challenges
 - Mode coupling

Tx 1

Tx 2

Тх М

Intersymbolic interference at receiver side



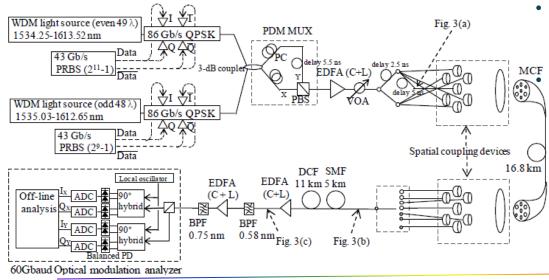
Fig. 1. A cross section of the fabricated fiber.

[Jun Sakaguchi, Proc. OFCNFOEC2011, OWJ2]

Table 1. Propagation characteristics.

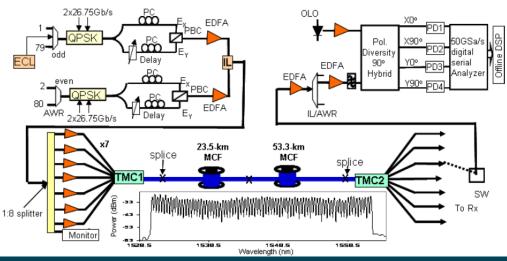
	Core 1	Core 4	Core 5		
Attenuation [dB/km]	0.212	0.199	0.194		
Dispersion [ps/nm/km]	17.5	19.4	14.7		
D. Slope [ps/nm ² /km]	0.056	0.058	0.054		

Mode 1 Rx 1 Rx 2 Rx N


Mode k

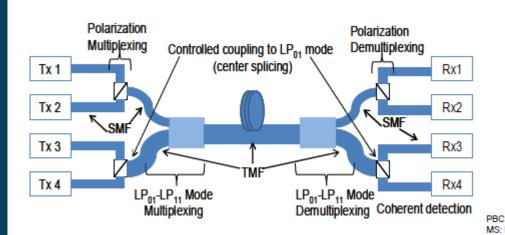
Mode 2

Recent *Spatial Multiplexing* experiments based on *multi-core* fiber


109Tb/s transmission of spatial divisio n multiplexed (SDM) signals over 16.8 km using a seven-core fiber.

Each SDM channel contains 97 WDM channels on a 100GHz grid and 2×86-Gb/s polarizationmultiplexed QPSK signals.

[OFCNFOEC2011, PDPB6]


- SDM and DWDM transmission of PDM-QPSK channels over a multicore fiber.
- A total capacity of 56-Tb/s

 (7×80×107-Gb/s) is transmitted over a 76.8-km seven-core-fiber with a record spectral-efficiency of 14b/s/Hz
 [OFCNFOEC2011, PDPB7]

Recent Spatial Multiplexing experiments based on *multi-mode* fiber

In2

ln3

Attenuator

#1

Attenuator

2900 symbols

Laser

MUX

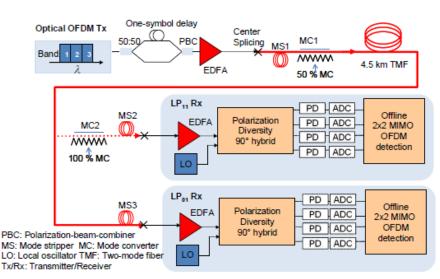
DE-MUX 40km

FMF

, 4x28Gb/s 4-driver

PRBS serializer

7


T×2

日

Н

×4-MIMO-DSF

Tx1

LP01/LP11 dual-mode and dual-polarization coherent OFDM detection at 107 Gb/s. [OFCNFOEC2011,PDP]

Summary

- Shift in complexity from the optical domain to electrical domain
 - E.g. doing dispersion compensating at the receiver side on DSP level
- Using unused physical dimension
 - such a 'space' by employing spatial division multiplexing
- Using broader single band to carry capacity.
 - Need flexi-grid band
- New fiber type will be needed to handle futures capacity demand

Thank you for your time.

