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CESNET

* E-infrastructure provider in Czechia
« Members 26+2 public universities and
academy of sciences

e Storages, High performance computing,
Multimedia

e Research and Education Network CESNET?2
« > 5800 km of dark fiber lines

« Two DWDM systems
 Proprietary 1510 km and Open 3760 km

* Over 1390 km of single fiber lines
* https://cesnet.cz
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B Part of GEANT project ===
B GN4-2 and GN4-3
B https://www.geant.orq
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https //www es. net/ 13 000 km of dark flbres 6
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Photonic Service

B End-to-end connection between two or more places in network
B Described by photonic-path and allocated bandwidth

B Photonic-path Is a physical route that light travels from the one
end point to the other or to multiple other end points respectively

B Allocated bandwidth is a part of system spectrum that is reserved
for user of Photonic service all along the Photonic-path.

B Minimal impact of network (no processing) on transmitted data
B Path all-optical, no OEO except special cases.
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 Photonic Services

cesnet

High speeds (600Gbps) cannot solve all challenges

Low and stable latency is important

Remote interactive cooperation (conferences, remote control, art) - 3D, 4K
Photonic service Prague Vienna 500 km 3 ms

IP Service Prague London 1000 km 30 ms




cesnet Why More Precise Clocks?

Time and frequency = quantities we are able to measure with the highest precision
Represent ideal way how to measure tiny effects

AvIv = gAh/c?

(Radio)astronomy, VLBI, SKA
Precise tests of fundamental physics:
« Constancy of fundamental constants
« Detection of gravitational wave
» Tests of special & general relativity

,»Constancy” of fundamental constants

rel. change of Ry (107" year]

10 Credit: Schnatz14

rel. change of « [107'¥ year]
Peik et al., PRL, 2004, 93/17




Galileo, GPS soOcC, VLBI

seismics, natural resources,
hydrological water inventory,
melting of the polar ice caps

Credit: Schnatz14

Earth sciences, remote sensing

« Land — geodesy, seismology, water resource and other natural
resources inventory, etc.

« Atmosphere — climate modelling and changes monitoring, etc.

« Oceans — circulation, geoid monitoring etc. 11



Clocks Are Improving
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cesnet Time and Frequency Transfer

Caesium fountain clock at NPL
UK, height of 2.5 m

Cost of ownership i
More interconnected clocks (Cs primary uf [
standards and H masers) improve WIS T L S
accuracy and stability of the time scale JEEEt{ Acetylene stabilized laser
“Interconnection” means time transfer

Hard to transfer some clocks (sensitive +
not a small ones)

Optical atomic clock based
on trapped single Ca ion 13




cesnet Satellite RF Based Transfer

GFPS COMMON VIEW TIME TRANSFER

Geo Salellite
/T TN =5[==
ol B
-
g% Remote Sites
. '.__V_'__
x X x
I T T

-
b

Applications: Metrology, Metwork Time Synchronisation, Return-Channel Links

« CV GNSS - 20000 km:(GPS, GALILEO, GLONASS, ...) precision 3 — 50 ns
 GNSS PPP (Precise Point Positioning) 0.1 ns
e TWSTF —2 x 36 000km: 0.1 ns

Credits: Colorado, Timetech
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http://www.colorado.edu/geography/gcraft/notes/gps/gif/comtime.gif

cesnet Time and Frequency Infrastructure

« T/F transfer + distribution cesnhet

: and Electronics L ] 1]

Institute of Photonics

* Fibers shared with data
* Projected length 2476 km
* Transmission on 1183 km
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Fibre Sharing

B Totalfibre line length 2476 km
B Single fibre transfer is advantage for Time and must for Frequency transfers
B Annual Single Fibre Rental cost EUR 740 000 (based on avg price*)

B Shareinfrastructure with data

*http://www.porta-optica.org/publications/POS-D3.2 Economical analysis.pdf
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Time and Frequency Infrastructure
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B 306 km line, dedicated bandwidth 8oo GHz, T+F, since 2014
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Very Interesting Noise

B Ultra-stable optical frequency dissemination

B 25 Apr 2016 — ML 4.1, epicentre located 20 km SW from Vienna
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M. Cizek et al., "Transfer of stable optical frequency for sensory networks via 306 km
optical fiber link," 2016 European Frequency and Time Forum (EFTF), 2016 19




Optical Fibre Seismology
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Optical Fibre Seismology

Displaoement (um)

HW‘[MW\FMWHWWM M Ao MNLWDID =+t

\ Malta Sea- ML 3.4 |

W W‘%M ‘ wi “W “‘“ W'ﬂ 'W\' bl A 1T-L2 st
L. i

Optical Phase (rad)

Link length: 96 km
Epicentre distance: 89 km

H B B NH-

| | I I I I | | I
10 20 30 40 50 60 70 80 90 100

70% of the Earth’s surface is water; Ocean Bottom

G Marra, C Clivati, R
Luckett, A Tampellini, J
Kronjager, L Wright, A
Mura, F Levi, S Robinson,
A Xuereb, B Baptie, D
Calonico ,Ultrastable
laser interferometry for
earthquake detection with
terrestrial and submarine
cables®, Science, 361,
486-49 (2018)

Seismometers installation difficult and expensive - Over 1 million km of submarine cable already installed

Submarine fibre links are far quiet (up to 40 dB) compared terrestrial links

Potential of important application: By detecting underwater earthquakes close to their epicentre, precious life-

saving time could be gained in a tsunami warning
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Fibre Protection

The most
common
causes of fibre

CDT Metro networks

CE,SNET 19 fibre cut experience 13
12 fibre cut outages per cuts annually A
based outages 3500 km last for every 1000 flliE = d|gg|r(1)g
last year year miles of fibre [1] activities (58%)

2% 5.4/Mmly 8.08/Mmly 2]

[1] W. D. Grover, “Mesh-Based Survivable Networks: Options and Strategies for Optical,
MPLS, SONET and ATM Networking”, PrenticeHall PTR, Upper Saddle River, 2004.
[2] Orange (France Telecom) in France (January 2010-March 2011).
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i Proactive Fibre Protection

How can that be done?

Most fibre cuts: machinery within constructions/thefts.

Heavy machines digging near a fibre shakes a cable before breaking it.
Active monitoring of vibrations near a fibre cable.

Mostly based on evaluation of phase/polarization/backscatter of light.

Multiple works put vibrations as predecessor of breakage, e.g.:

In combination with SDN and NetOS allows to reduce outage times.

J. E. Simsarian and P. J. Winzer, "Shake before break: Per-span fibre sensing with in-line polarization
monitoring,” 2017 Optical fibore Communications Conference and Exhibition (OFC), Los Angeles, CA,
2017, pp. 1-3
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Vibration Sensing Using Fibre

Vibration sensing methods using fibre/fibres, basic setups

Requirement: Without installation works along fibres

Phase sensitive Polarization based Interferometers
OTDR sensing

Sensitivity

Number of required fibers 1 1 2

Single-ended measurement Yes MNo (passive mirror at No (passive mirrors at
least) least)

Measurement range Tens of kilometers Tens of kilometers Tens of kilometers

Localization of event Yes No No
(in basic (in basec
configuration) configuration)

Price High Low Moderate

Special requirements Elimination of

reflections in optical
route, channel

spacing >200 GHz
away from data. 24
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Vibration Sensing Using Fibre

Lab comparison of polarisation and interferometric methods (Michelson)

Module spectrum
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[1] P. Munster, T. Horvath, P. Sysel, J. Vojtech and R. Velc, "Comparison of interferometry based
and polarization based sensing systems for use in fiber infrastructure protection," 2017
International Workshop on Fiber Optics in Access Network (FOAN), Munich, 2017 25



Vibration Sensing Using Fibre

B Polarisation method in the field
City line 13km of G652 fibre
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SOP change caused by mechanical
vibration near the cable. L: the Poincare
sphere, R: Stokes parameters.

SOP change caused by shaking the
cable. L: the Poincare sphere, R:
Stokes parameters.
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Vibration Sensing Using Fibre

Interferometric method in the field
City line 13km of G652 fibre

Time waveform
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Michelson interferometer, knocking on duct
| Response in time and corresponding spectra
g ’ © (below).
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Vibration Sensiﬁg-*Using Fibre

B Sensitivity of interferometric method




Vibration Sensing Using Fibre

B Polarisation and interferometric method comparison

B |nterferometric system has great sensitivity, however in the real network the received
signal is very noisy, and it requires a lot of effort to extract useful information.

B Polarisation system sensitivity is lower and detects only mechanical vibrations of the
fibre however the signal is not so noisy and hence the post-processing is easier.
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Vibration Sensing Using Fibre

B Phase sensitive OTDR

m Foracoustic/mechanical vibrations detection own back-scatter based fibre-optic sensors based on the
Rayleigh scattering
m Ultra narrow spectral width stable laser source and high-power signal

JL AOM
G driver IN
ICW —p{ 50/50 [ [> ) N (Q)'-f'fﬁi_’_)_ S5 55 555D
aser —~.__“eora AOM o
~ {1
50/50 ||
<&

m Rayleigh back-scatter signal is about 60 dB lower compared to the input — high-power optical input

signal is necessary.
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E_?ﬁnet Vibration Sensing Using Fibre

Vibrations
Phase sensitive-OTDR K@

Backscatter p051t10n [kn]
IS measured
while pulse

propagates

Based on signal intensity change
localisation of event is possible in
order of tens of meters 31




B Phase sensitive OTDR
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cesnet Distributed Acoustic Sensing

* Vibration sensing (25 km West ...
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Jonathan B. Ajo-Franklin “Exploring the Subsurface with Distributed Acoustic
Sensing & Dark Fiber”

https://www.cesnet.cz/wp-
content/uploads/2019/09/ajofranklin_darkfiber CEF 2019v2shortSmall-1.pdf
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E_?ﬁnet Vibration Sensing Using Fibre

B Forlongdistances sharing of fibre is highly desirable (100 km single fibre rental ~ 40 kEUR annually)

B |Intensive verification of parallel operation with coherent data and also precise time and ultra stable
optical frequency

Ti{ne ®-OTDR Frequency
Allin one: time, phase sensitive OTDR, E
100G DP-QPSK data, optical frequency [1] : |

IR

%49 5 1,550 1,550.5 1 051 1,551.5 1,552 1,552.5 1,553
Wavelength [nm]

[1] T. Horvath et al.,”Simultaneous transmission of accurate time, stable frequency, data, and sensor
system over one fibre with ITU 100GHz grid” Optical Fibre Technology, 2018

34



S_?_ﬁnet Vibration Sensing Using Fibre

Parallel operation of phase sensitive OTDR with coherent data

Dependence of 100 Ghps data on pulsed sensor signal (G.652D) Dependence of 100Gbps data on pulsed sensor signal (G.655)
T T T T T Time T
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T. Horvath et al.,”Simultaneous transmission of accurate time, stable frequency, data, and sensor system
over one fibre with ITU 100GHz grid” Optical Fibre Technology, 2018

35



Mass Production

1980 2000 2020
Laser diodes $3000 each $3 each (compact <$1 each (CD and
(prototypes) disc players) DVD players)

Single-mode fibers

Integrated optic
modulators

Fiber optic gyros

$5—10 per meter
(limited
availability)

Laboratory devices

Laboratory devices

$0.10 per meter
(standard
telecom)
$500 each

$500-5000 each
(low- to medium
cost navigation,
early use)

<$0.05 per meter

(standard
telecom)

$50 each (fiber optic

£Yros)

$500—-1000 each

(widespread use) Market share

Fiber sensor

Techna Vio, Global fiber optic sensors market, London, United

Kingdom, 2015.

E. Udd, E. and Wi B. Spillman Jr., Fiber optic sensors: an introduction
for engineers and scientists, 2nd Ed., Hoboken, NJ, John Willey 2011
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Summary

Huge overinvestment into fiber infrastructure during dot.com bubble

Time and frequency are quantities we can measure the most precise, suitable to
detect very tiny effects

Fibres (even telecomm) can provide very stable transfer of time and frequency
Can be used for seismic, oceanographic.... measurements/ detection

Down time is expensive - built-in OTDR functionality allows limiting it by remote
fault location

Built-in OTDR is becoming standard part of DWDM transmission systems

However, much more effective way would be to locate the potential place of future
fault in advance, and to try avoiding it

Telecomm industry benefits from mass production
37
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Thank you very much for
Kind Attention!

Questions?

Jjosef.vojtech@cesnet.cz
(]335 =]



